Giảng Viên - Bài Báo khoa học ISI/SCOPUS - Năm 2024
-
Tran, V. T., Nguyen, T. K., Nguyen-Xuan, H., & Vo, T. P. (2024). Meta-heuristic optimization algorithms for vibration and buckling analysis of laminated composite plates. Engineering Analysis with Boundary Elements, 169, 105974.
-
Chau-Dinh, T., Tran-Chi, N., Nguyen, V. H., & Nguyen, T. K. (2024). Geometrically nonlinear analysis of plates and shells by a cell-based smoothed CS-MITC18+ flat shell element with drilling degrees of freedom. Thin-Walled Structures, 203, 112254.
-
Bui, X. B., & Nguyen, T. K. (2024). Deterministic and stochastic flexural behaviors of laminated composite thin-walled I-beams using a sinusoidal higher-order shear deformation theory. Mechanics Based Design of Structures and Machines, 52(10), 7349-7378.
-
Tran, V. T., Nguyen, T. K., & Nguyen-Xuan, H. (2024). An intelligent computational iBCMO-DNN algorithm for stochastic thermal buckling analysis of functionally graded porous microplates using modified strain gradient theory. Journal of Thermal Stresses, 47(9), 1188-1227.
-
Nguyen, N. D., Nguyen, T. N., Trinh, L. C., & Nguyen, T. K. (2024). A Higher-order shear deformation theory and modified couple stress theory for size-dependent analysis of porous microbeams resting on a foundation. International Journal of Structural Stability and Dynamics, 24(16), 2450182.
-
Nguyen, N. D., Bui, V. T., & Nguyen, T. K. (2024, June). A modified strain gradient theory for buckling, bending and free vibration behaviors of metal foam microbeams. In Structures (Vol. 64, p. 106533). Elsevier.
-
Bui, X. B., Nguyen, T. K., & Nguyen, P. T. (2024). Stochastic vibration and buckling analysis of functionally graded sandwich thin-walled beams. Mechanics Based Design of Structures and Machines, 52(4), 2017-2039.
-
Bui, X. B., Nguyen, P. T., & Nguyen, T. K. (2024). Spectral projection and linear regression approaches for stochastic flexural and vibration analysis of laminated composite beams. Archive of Applied Mechanics, 94(4), 1021-1039.
-
Hung, P. T., Nguyen-Xuan, H., Phung-Van, P., & Thai, C. H. (2024). Modified strain gradient analysis of the functionally graded triply periodic minimal surface microplate using isogeometric approach. Engineering with Computers, 40(5), 2877-2904.
-
Hung, P. T., Thai, C. H., & Phung-Van, P. (2024). Isogeometric free vibration of functionally graded porous magneto-electro-elastic plate reinforced with graphene platelets resting on an elastic foundation. Computers & Mathematics with Applications, 169, 68-87.
-
Thai, C. H., Hung, P. T., Nguyen-Xuan, H., & Phung-Van, P. (2024). A free vibration analysis of carbon nanotube reinforced magneto-electro-elastic nanoplates using nonlocal strain gradient theory. Finite Elements in Analysis and Design, 236, 104154.
-
Phung-Van, P., Nguyen, L. B., Hung, P. T., Nguyen-Xuan, H., & Thai, C. H. (2024). Nonlocal nonlinear analysis of functionally graded piezoelectric porous nanoplates. International Journal of Mechanics and Materials in Design, 20(4), 743-753.
-
Phung-Van, P., Nguyen-Xuan, H., Hung, P. T., Abdel-Wahab, M., & Thai, C. H. (2024). Nonlocal strain gradient analysis of honeycomb sandwich nanoscale plates. Thin-Walled Structures, 198, 111746.
-
Phung-Van, P., Hung, P. T., & Thai, C. H. (2024). Small-dependent nonlinear analysis of functionally graded triply periodic minimal surface nanoplates. Composite Structures, 335, 117986.
-
Hung, P. T., Thai, C. H., & Phung-Van, P. (2024). Isogeometric free vibration of honeycomb sandwich microplates with the graphene nanoplatelets reinforcement face sheets. Engineering Structures, 305, 117670.
-
Phung-Van, P., Nguyen-Xuan, H., Hung, P. T., & Thai, C. H. (2024). Nonlinear isogeometric analysis of magneto-electro-elastic porous nanoplates. Applied Mathematical Modelling, 128, 331-346.
-
Thai, C. H., Hung, P. T., Nguyen-Xuan, H., & Phung-Van, P. (2024). A meshfree method for functionally graded triply periodic minimal surface plates. Composite Structures, 332, 117913.
-
Phung-Van, P., Hung, P. T., Nguyen-Xuan, H., & Thai, C. H. (2024). Small scale analysis of porosity-dependent functionally graded triply periodic minimal surface nanoplates using nonlocal strain gradient theory. Applied Mathematical Modelling, 127, 439-453.